And down, down to Goblin-town You go, my lad!
Ну что ж, учитывая, что за трава колосится в мозгу у современных русских нациков - неудивительно)
Удивительно, что кто-то из них знает имя Кантора. Хотя мало ли... мож услышал случайно
Удивительно, что кто-то из них знает имя Кантора. Хотя мало ли... мож услышал случайно
21.03.2013 в 16:52
Пишет гн_Стефан_Скеллен:Траваааа
Знаете ли Вы, что до поражения Германии во Второй Мировой, было два вида математики, - арийская и еврейская, - названные так по национальности своих сторонников?
Арийская Математика брала пример с естественных наук, склонялась к эмпирицизму, конечности и познаваемости мира, и работала исключительно c объектами, которые можно построить физически (например, в памяти ЭВМ или на бумаге).
Еврейская Математика же склоняется к религиозной абстракции и казуистике: всеохватывающей бесконечности, множествам, и порождаемым ими апориям. Так Еврейская Математика постулирует, что можно удвоить объект, путём перекладывания его частей, пространство делимо на "бесконечно малые", а для любого числа, Бог может создать большее число (аксиома о бесконечности).
Основатель Еврейской Математики, Гидеон Кантор, писал, что работает с "Абсолютом - непознаваемым человеком Актус Пьюриссимус, именуемым многими Богом". Примечательно, что Кантор окончил свою жизнь в психиатрической лечебнице, однако дело Кантора поддержали сионистские организации и католическая церковь, доведя до того, что сознательные германские студенты и профессора протестовали, требуя убрать еврейскую заразу из ВУЗов.
После войны, евреи сделали всё возможное, чтобы уничтожить Арийскую Математику, удалив её сторонников и подменив математику Теорией Множеств - центральной опорой Еврейской Математики. Так основатель интуиционизма, Лёйтзен Брауэр, подвергся изоляции, а результаты Русских и Английских финитистов умалчивались и не получили распространения. В русской истории от рук евреев страдали математики Егоров (погиб в ГУЛАГе), Лузин (подвергся травле и был отстранён), Флоренский (расстрелян), Есенин-Вольпин (репрессирован).
Сегодня математика стала еврейской даже по-цвету. Государства поддерживают так называемую "анти-расистскую математику", требующую например использовать еврейские имена в примерах и задачках, рассказывая при этом о великом "вкладе" еврейства в развитие математики.
Евреи, занимающиеся математикой, предпочитают всё специфическое-эльфийское. Причём презирают тех, кто занимается вещами, имеющими практическое применение. Поэтому в Советском Союзе вышел закон, по-которому в ВУЗах должно учиться евреев пропорционально их населению. Лишних отчисляли. Преподаватели евреи на мехмате в знак протеста ушли из университета и образовали НМУ (Независимый Московский Университет). Отсюда и название в мехматянском простонародье ``еврейская секта''.
Еврейские дети в СССР часто учились отдельное от детей гоев, в специальных элитных школах. Одной такой была Московская 57-й спецшкола, ученики которой не без оснований называют себя "пятидесятисемитами". Там часто преподавали выдающиеся преподаватели с мехмата.
В основании математики последнего столетия лежит знаменитая теория множеств Георга Кантора. Если вы откроете большую часть современных серьезных учебников математического и функционального анализа или топологии, или теории вероятности, то в начале почти наверняка увидите экскурс в теорию множеств. Почти вся современная математическая литература написана на теоретико-множественном языке. Камень теории множеств лежит в основании грандиозного здания современной науки.
Но в самом сердце этой самой фундаментальной вроде бы теории, лежащей в основе "царицы наук", почти сразу после ее создания были обнаружены очень серьезные парадоксы и проблемы, не преодоленные до сих пор. Уже сто лет с тех пор математика находится в состоянии перманентного кризиса, который остро воспринимается самыми выдающимися учеными. Великий немецкий математик Герман Вейль писал по этому поводу: "Мы менее чем когда-либо уверены в незыблемости наиболее глубоких оснований логики и математики. Как у всех и всего в мире, сегодня у нас есть свой кризис".
Математика говорит, что у шпекеровой последовательности есть предел? Говорит. Практика говорит, что его нет? Тоже говорит. Математика говорит, что апельсин можно удвоить путём перекладывания его частей? Говорит. Удалось кому-нибудь с новозаветных времён повторить эту процедуру? Наблюдения раз за разом показывают, что при такого рода операциях закон сохранения вещества неукоснительно соблюдается. Математика предсказывает наличие в бесконечномерном гильбертовом пространстве базиса Гамеля. Наблюдать оный пока вообще никому не удалось. Так что математика - именно лженаука, и никак иначе.
Именно уверенность в нематериальности математических объектов влечёт за собой веру в возможность "приближённых" вычислений (что чушь - вычисления бывают либо точные, либо неверные). Да, самолёты летают и при засилье Теории Множеств. Но если бы математика была конструктивной, они летали бы лучше, потому что конструкторы не забивали бы себе голову теоретико-множественным мусором, на практике бесполезным и дезориентирующим.
Аксиомы имеют смысл только тогда, когда они выражают свойства объективно существующих предметов. Так, если мы введём аксиому "на каждой руке человека содержится 3.1415… пальцев" и построим на базе этой аксиомы формальную теорию, то положения этой теории будут бессмысленны и даже вредны.
Источник прекрасного: vk.com/antisemitic?z=photo189833992_297183188%2...
Там еще про языки программирования есть, но там скучно.
(с)пер у Мамуды - users.livejournal.com/_mamuda_/1123080.html?mod...
URL записиЗнаете ли Вы, что до поражения Германии во Второй Мировой, было два вида математики, - арийская и еврейская, - названные так по национальности своих сторонников?
Арийская Математика брала пример с естественных наук, склонялась к эмпирицизму, конечности и познаваемости мира, и работала исключительно c объектами, которые можно построить физически (например, в памяти ЭВМ или на бумаге).
Еврейская Математика же склоняется к религиозной абстракции и казуистике: всеохватывающей бесконечности, множествам, и порождаемым ими апориям. Так Еврейская Математика постулирует, что можно удвоить объект, путём перекладывания его частей, пространство делимо на "бесконечно малые", а для любого числа, Бог может создать большее число (аксиома о бесконечности).
Основатель Еврейской Математики, Гидеон Кантор, писал, что работает с "Абсолютом - непознаваемым человеком Актус Пьюриссимус, именуемым многими Богом". Примечательно, что Кантор окончил свою жизнь в психиатрической лечебнице, однако дело Кантора поддержали сионистские организации и католическая церковь, доведя до того, что сознательные германские студенты и профессора протестовали, требуя убрать еврейскую заразу из ВУЗов.
После войны, евреи сделали всё возможное, чтобы уничтожить Арийскую Математику, удалив её сторонников и подменив математику Теорией Множеств - центральной опорой Еврейской Математики. Так основатель интуиционизма, Лёйтзен Брауэр, подвергся изоляции, а результаты Русских и Английских финитистов умалчивались и не получили распространения. В русской истории от рук евреев страдали математики Егоров (погиб в ГУЛАГе), Лузин (подвергся травле и был отстранён), Флоренский (расстрелян), Есенин-Вольпин (репрессирован).
Сегодня математика стала еврейской даже по-цвету. Государства поддерживают так называемую "анти-расистскую математику", требующую например использовать еврейские имена в примерах и задачках, рассказывая при этом о великом "вкладе" еврейства в развитие математики.
Евреи, занимающиеся математикой, предпочитают всё специфическое-эльфийское. Причём презирают тех, кто занимается вещами, имеющими практическое применение. Поэтому в Советском Союзе вышел закон, по-которому в ВУЗах должно учиться евреев пропорционально их населению. Лишних отчисляли. Преподаватели евреи на мехмате в знак протеста ушли из университета и образовали НМУ (Независимый Московский Университет). Отсюда и название в мехматянском простонародье ``еврейская секта''.
Еврейские дети в СССР часто учились отдельное от детей гоев, в специальных элитных школах. Одной такой была Московская 57-й спецшкола, ученики которой не без оснований называют себя "пятидесятисемитами". Там часто преподавали выдающиеся преподаватели с мехмата.
В основании математики последнего столетия лежит знаменитая теория множеств Георга Кантора. Если вы откроете большую часть современных серьезных учебников математического и функционального анализа или топологии, или теории вероятности, то в начале почти наверняка увидите экскурс в теорию множеств. Почти вся современная математическая литература написана на теоретико-множественном языке. Камень теории множеств лежит в основании грандиозного здания современной науки.
Но в самом сердце этой самой фундаментальной вроде бы теории, лежащей в основе "царицы наук", почти сразу после ее создания были обнаружены очень серьезные парадоксы и проблемы, не преодоленные до сих пор. Уже сто лет с тех пор математика находится в состоянии перманентного кризиса, который остро воспринимается самыми выдающимися учеными. Великий немецкий математик Герман Вейль писал по этому поводу: "Мы менее чем когда-либо уверены в незыблемости наиболее глубоких оснований логики и математики. Как у всех и всего в мире, сегодня у нас есть свой кризис".
Математика говорит, что у шпекеровой последовательности есть предел? Говорит. Практика говорит, что его нет? Тоже говорит. Математика говорит, что апельсин можно удвоить путём перекладывания его частей? Говорит. Удалось кому-нибудь с новозаветных времён повторить эту процедуру? Наблюдения раз за разом показывают, что при такого рода операциях закон сохранения вещества неукоснительно соблюдается. Математика предсказывает наличие в бесконечномерном гильбертовом пространстве базиса Гамеля. Наблюдать оный пока вообще никому не удалось. Так что математика - именно лженаука, и никак иначе.
Именно уверенность в нематериальности математических объектов влечёт за собой веру в возможность "приближённых" вычислений (что чушь - вычисления бывают либо точные, либо неверные). Да, самолёты летают и при засилье Теории Множеств. Но если бы математика была конструктивной, они летали бы лучше, потому что конструкторы не забивали бы себе голову теоретико-множественным мусором, на практике бесполезным и дезориентирующим.
Аксиомы имеют смысл только тогда, когда они выражают свойства объективно существующих предметов. Так, если мы введём аксиому "на каждой руке человека содержится 3.1415… пальцев" и построим на базе этой аксиомы формальную теорию, то положения этой теории будут бессмысленны и даже вредны.
Источник прекрасного: vk.com/antisemitic?z=photo189833992_297183188%2...
Там еще про языки программирования есть, но там скучно.
(с)пер у Мамуды - users.livejournal.com/_mamuda_/1123080.html?mod...